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ABSTRACT 

In this  paper  we look at  r equivalence, which is an equivalence relation 

tha t  is implicit  in Vershik's classification of r-adic decreasing sequences of 

a-algebras,  and also in work of Stepin. This  equivalence relation is used 

to classify group actions of the  group G = ~n~176 Z/rnZ, r = ( r l ,  r2, ...). 
It  is shown tha t  given any sequence of natural  numbers  satisfying a cer- 

ta in growth  rate,  all Bernoulli G actions are r equivalent to a certain 

natura l  act ion of G, which we call the  t ranslat ion action. Fur thermore,  

these actions are zero r entropy and r finitely determined,  where this 

not ion arises canonically from the  restricted orbit  equivalence theory of 

Kammeyer  and Rudolph.  

1. I n t r o d u c t i o n  

Let Z be the integers, and N be the natural numbers. Let (X, ~', #) be a non- 

atomic Lebesgue probability space, and {Tg}gec be a free measure preserving 

ergodic group action on the space, where G oo r,~ = ~n=l  Z/r,,Z and e N \{1} .  
i i 

Set r = ( r l , r 2 , . . . ) .  Let Gi = ~n=l  Z/rnZ. Set qi = # G i  = 1-I,~=1 rn. Notice 

G = ~J Gi. Our first example of a G action is what we will call the t r a n s l a t i o n  

action. 

Example 1.1: Let X = 1-In~176 Z/ rnZ,  # = Haar measure, Y = the completion of 

the Borel a-algebra and (Tgx)n = (x,~ + g~)mod r~. Since the action is rotation 

on a compact abelian group it has discrete spectrum and entropy 0. 
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Another example is the natural generalization of the Bernoulli actions for this 

group. 

Example  1.2: Let X = {0 , . . . ,  n - 1} a, # be the Bernoulli measure on X given 

by a probability vector (P0,.. .  ,Pn-1) on the factors, let 9 c be the completion 

of the Borel a-algebra, and T be the shift. Notice that the partition P0 by the 

values of the identity coordinate is a generator for this action, so 

n - - I  

h(T)  = h ( T , P )  = - ~j-~.pi logpi. 
i=0 

There is a natural equivalence relation that arises when considering group 

actions of this group, namely r equivalence. 

Definit ion 1 .h  Suppose T and S are two ~ Z/r ,~Z actions. T is r equivalent to 

S if there is a 1-1 measure preserving map r : X -~ Y such that {r  ~ ---- 

{TgCx}geG~ for every i. 

Dye's theorem says that any two ergodic G actions are orbit equivalent, since G 

is a countable discrete amenable group. However, this equivalence relation asks 

for more than just orbit equivalence, since it asks to preserve each Gi orbit. This 

equivalence relation arises naturally from classifying certain decreasing sequences 

of a-algebras up to isomorphism. Vershik initiated the study of these systems in 

the late 1960's. A sequence of non-atomic a-algebras 9 v -- 5r0 D ~1 "'" is r-adic 

if the fibers of 9rn over $'n+1 all contain rn points of equal mass. Two of these 

sequences are isomorphic if there is a 1-1 measure preserving map between the 

two spaces that  takes the nth a algebras to each other. Choosing measurable 

sections of ~'nlYn+l gives an action of G. Likewise, given any G action it is 

possible to define such a sequence by looking at the a-algebras of Gn invariant 

sets. It follows from the definitions that isomorphism between r-adic a-algebras 

is the same as the notion of r equivalence between two G actions. A G action is 

ergodic iff its corresponding sequence has trivial intersection. An r-adic sequence 

{gr~} is called s t a n d a r d  if there exists a sequence of independent partitions {P~} 
(x) 

such that  ~'~ = Vi=n Pi. This is Vershik's terminology. The sequence of a- 

algebras generated by the G~ invariant sets of the translation action is standard. 

Vershik originally thought that  every r-adic sequence with trivial intersection was 

standard [14]. This would imply that  any two ergodic G actions are r equivalent. 

Later, Vershik constructed examples of dyadic sequences that are not standard 

[15]. Later, Vershik showed that a certain entropy which he defined for r-adic 

sequences is an isomorphism invariant in the case when the sequence r does not 
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grow too fast. He also showed that  this entropy corresponds to the regular group 

entropy in the case of Bernoulli actions [16] [17]. Stepin showed that  the entropy 

that  Vershik defined corresponds to the regular group action entropy for arbitrary 

G action, and reproved the invariance of entropy when r does not grow too fast 

[12] [13]. In particular, this condition encompasses dyadic equivalence, which is 

the case when rn = 2 Vn. Vershik also showed, through his lacunary isomorphism 

theorem, that  there exist sequences r for which entropy is not an r equivalence 

invariant [14]. Thus a natural question arises: When is entropy an invariant for r 

equivalence? The previously mentioned theorem gives a partial solution to this. 

More precisely, define 

hr(T) = inf{h(S) I S is r equivalent to T}. 

THEOREM 1.1 ([18]): If~--] lOgq~_, < c~ then hr(T) = h(T) VT. 

More recently, Hasfura showed that there is a mixing G action in every r 

equivalence class [6]. This implies that for any r, r equivalence is strictly weaker 

than an isomorphism of G actions. This is because mixing is a G action isomor- 

phism invariant and the translation action is not mixing. Building on this result, 

Hasfura and Fieldsteel showed that  there is a completely positive entropy G 

action in every positive entropy equivalence class [5]. Also, we showed that  r 

equivalence is a restricted orbit equivalence [7] as defined in Kammeyer and 

Rudolph's recent paper [8]. In other words, for any r there is a corresponding 

'size' m~, whose equivalence classes correspond to those of r equivalence. Using 

this fact and some combinatorial arguments, one gets the following. 

THEOREM 1.2 ([7]): I f ~  logr~+l = c~ then h~(T) = 0 VT. 
qk 

In the first case, r is called e n t r o p y  prese rv ing  and in the second case r 

is called e n t r o p y  free. Restricted orbit equivalence theory ensures that the r 

entropy is achieved on a residual set in every r equivalence class. The goal of 

this paper is to determine the nature of the standard equivalence class. In the 

next two sections, a number of different properties of an action are defined, and 

then proven to be equivalent to standardness. One of the properties defined 

in section 2 is the same as Vershik's standardness criterion, which he proves is 

equivalent to standardness [18]. The property defined in section 3 is r finitely 

determined. The definition of r finitely determined follows a similar pattern to 

the definition of finitely determined for Ornstein's isomorphism theorem [10] and 

of finitely fixed for the theory of Kakutani equivalence, which was developed by 

Feldman, Katok, Ornstein, Weiss and Rudolph [2], [9], [11]. All the directions of 

the implications are included for completeness, although the equivalence of the 
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standardness criteria to standardness was originally proved directly and hence 

does not depend on restricted orbit equivalence theory. The main theorem in the 

last section states that when r is entropy free, the Bernoullis are standard. This 

is proved using one of the standardness criteria. Using this result, together with 

a certain extension of Sinai's theorem, Feldman proved that there is a positive 

entropy action in every r equivalence class when r is entropy free [3]. Then using 

this extension, Feldman proved that there are actions of any entropy in every 

equivalence class [4]. For simplicity, when we want to denote the G action we 

drop T and simply write gx. 

2. S t a n d a r d n e s s  cr i ter ion 
i 

Set G = ~ Z/rnZ, r = (rl, r2,...), and G~ = ~ n = i  Z/rnZ. In this section and 

the next we define a number of different properties for G actions and show that 

they are all equivalent. Define 

. A n = { a E G ~ " : a ( g ) - a ( h ) E G ~ v v g - h E G i ,  Vi<_n, Vg, hEGn}. 

These are automorphisms of the Gn tree. For a finite partition P,  let 

aP(x,y) = inf #{g  E GnlP(gx) ~ P(a(g)y)} 
aeA,~ qn 

Criterion 1 states that  for all finite partitions P,  

/ aP(z,y)d# • # --+ O. 

This is the criterion given in [18]. If a E A ~ for m > n define 

x a ,  # { g  e ajla(a) - a(0) r a} 
ran(a) 

j=l/-" 2Jqj 

rn,,(a) is small if on most of the small subgroups a looks like a translation by 

some element g E G,~. Let 

vP(x'Y) = ~e.a~inf [ #{g E G'dP(gx) P(a(g)y)} + m,~(a)] . 

Criterion 2 states that  for a generating partition P, 

vPn (x,y)d# x # -~ O. 

The goal of the next two sections is to prove the following. 
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THEOREM 2.1: Given a G action T with a finite generator, TFAE: 

1. T is standard, 

2. T satisfies criterion 1, 

3. T satisfies criterion 2, 

4. T is r finitely determined and h~(T) = O, 

where the last property has not yet been introduced. Before doing so, however, 

we show 1 ~ 2 ~ 3. After that, we define 4 and show 3 ~ 4 ~ 1. 

Remark 2.1: When T does not have a finite generator, simple modifications can 

be made in the proof of this theorem to establish 1 =~ 2 ~ 4 ~ 1. 

To show 1 ~ 2 it suffices to show that  the translation action satisfies criterion 

1 and that  criterion 1 is an r equivalence invariant. 

PROPOSITION 2.1: The translation action satisfies criterion 1. 

Proof." First notice that  the translation action has the property that  there is a 

sequence of sets (Fn} such that  Vn UaeG. 9 F,~ = X,  (gF,~}aec ~ are mutually 

disjoint, and if iTn = (gF,~)geg., then iT~ //~ iT. This is because the sets Fn = 

{x E X] Xl . . .  xa = 0 . . .  0} serve as the bases of towers iTn that  increase to the 

full algebra. Hence it suffices to show that  an action with this property satisfies 

criterion 1. Set Ln(P) = f ~P(x ,y)d#  x / z  and L(P)  = lim,~_+oo L,~(P). This 

limit exists since L,~ is decreasing in n. Since for any 3cj there is only one Gj 

name up to translation by elements in Gj, L(ITj) = 0. Also L is continuous. 

Since any finite partit ion P can be approximated arbitrarily well by some iTj 

and, for all j ,  L(ITj) = O, it follows that for any finite partit ion P, L(P)  = O. 

I 

Now we show that  criterion 1 is an r equivalence invariant. Suppose T is a G 

action on (X, iT, it) with finite partition P,  S is the standard action on (Y, G, v) 

and r  X --+ Y is an r equivalence. Set t P ( x )  = P ( r  For t x ,  t y  E ]7, find 

a E Jtn that  attains the minimum in a~nP(r ty ) .  For g C Gn, let h be defined 

by 
r  l Sg ty  = Thy. 

Define b(h) by 

r  S~(g)r = Tb(h)x. 

Prom these formulas it is clear that  

and the result follows. 
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Now we prove 2 ~ 3. For a generator P and any j it is possible to find n 
pJ 

such that for most pairs of points (x, y), a~ (x, y) is small. This implies that the 
p3 

automorphism used in a~ (x, y) could have been chosen as a translation on the 
P is Gj word of many of the points in the G~ orbit of (x, y), which means that  v n 

also small. 

3. r f in i te ly  d e t e r m i n e d  

In this section we prove criterion 2 implies zero r entropy and r finitely deter- 

mined implies standard. Restricted orbit equivalence theory does not guarantee 

the existence of a 'finitely determined' class for an entropy free equivalence re- 

lation. However, the results of this section show that they exist, and that  they 

correspond to the actions in the standard equivalence class. We first define r 

finitely determined in two ways. We develop the idea of ~r, which is the ana- 

logue of d in this setting. We develop a finite version, ~,~, and then establish 

the connection between the two. By using the finite version, we show that crite- 

rion 2 implies r finitely determined. To close the circle of implications, we then 

apply the equivalence theorem, which implies that zero r entropy and r finitely 

determined imply standard. 

Let (X, ~', #, P)  and (Y, ~, u, Q) be two free ergodic measure preserving G 

actions. For any partition P define P~ = Vgea~ gP, #,~ = (P~)*#, and likewise 

for Q. 

L e t . d  ~ = {a E M~la(0) = 0}. G,~ x G n  acts on pn  •  by the shift and 

G,~ acts on A ~ by de(k) = a(g + k) - a(g). Let )~n = P~ • Q'~ • A ~ and 2b '~ 

be the corresponding action on )(,~. Let ~rl : )(,~ -+ pn  and 7c2 : X,~ ~ Q'~ be 

projection and era,n: )(m ~ f(,~ be the restriction map. Let aq(g) = q(a-l(g)).  
By an abuse of notation, # can be a measure on X or p a ,  and likewise u can be 

a measure on Y or QG. Let A(~,4,a) = (a~,agl, a-1). Define 

Remember, if a E A ~ for m > n, 

#{g e Gila(g) r g} ran(a) Z.~j=I 2J qj 

Define 
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PROPOSITION 3.1: V,~(#n,/]n) >-- Vr-l(#n-1,/In-l)" 

Prook For any ft~ E J~ define the projection to be r This new measure 

is in Jn-1 since it projects correctly and is invariant under ~n-1.  Since this 

projection measure does not increase the value in the expressions in the definition 

of ~ ,  the result follows. I 

Given fin E J~()(n) it is possible to construct fin,~ on )~ = (P • Q)C • A 

where 

A = {a E GGla(O) = 0,a(h) - a(g) E Gj r h - g E GjVj, Vg, h E G}. 

If a e A then a(Gj) -= GjVj. This forces A to be compact, since a diagonalization 

argument shows that any sequence has a convergent subsequence. Now/5~,~ will 

only give support to those a E ,4 such that a(0, g) = (0,g), where 0 E Gn and 

g E G/Gn. This implies that algc ~ E A ~ To define f~n,~ it is enough to specify 

for m > n that 

t~n, ~o((p,~,a)lGm)= n ft,~((P,O,a)lgG~). 
g6Gm/G~ 

It is clear that  r = ftn. Notice that t~n,r162 is G invariant, since if g 6 

Gn, ftn is Gn invariant, and if g E Gm/Gn then it is invariant because of the 

multiplication property. However, in general ft~,~ will not project correctly. 

Take ft~ to be a weak star limit point of {t~n,oo}. Notice now tha t /2~  projects 

correctly. To see this, notice that  given any cylinder set based on coordinates in 

some Gin, ftn,~ projects correctly for n _> m. For a 6 Jr, let re(a) = limmn(a). 

This limit exists since ms is increasing in n. Notice now that 

l i m ~ ( # n ,  p~) = f~o~{(P, q, a) E )(I/~(0) # q(0)} + / m(a)dftoo. 

Set Vr(#,u) = l im~(#,~,un).  Define IF, Q[ = 1 E I#Pi -- vqil. 

Definition 3.1: A G process (X, Jr,#,P) is r finitely determined if given any 

e > 0, Sj and 8 > 0, such that  whenever (Y, G, v, Q) is another ergodic G process 

with 

1. IPJ,QJ I < 5, and 

2. hr(T,P) < hr(S,Q) +5, then 

3. 9r(#, v) < e, or equivalently, 

4. ~(#n,Un)  < ~ Vn. 
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First we show that  if some G process (X, 9 ~, #, P) satisfies criterion 2, then 

hr(T) = O. Let (~ be the metric between words that  counts the number of 

disagreements and divides by the length of the words. If this process satisfies 

the standardness criterion, then most of the pairs of words can be matched most 

of the t ime in d after applying an automorphism of the tree. For each G,, word 

apply an automorphism to it so that  it is within e in d to all but e of all the other 

words in pn .  This new system is r equivalent to the old one but has entropy 

0, since given any e > 0 there exists an n such that  after throwing away a set 

of measure c all the remaining G,, words are within e of each other. Now we 

show tha t  if some G process (X, 9 v, #, P)  satisfies criterion 2, then it is r finitely 

determined. 

THEOREM 3.1: Given e > 0 and f vPd~ x ~ -+ O, there is a j and 5 > 0 such 
that whenever (Y,•, ~,Q) is another ergodic process with [PJ,QJ[ < 5 then 3N 
such that, for n > N, ~,~(#,,, u,~) < e. 

Proos Since the partition is fixed, let vj(x, y) = v~(x, y). Notice vj is a function 

on X •  or on PJ x l  pj. Set 5 = (e/32) 2. F i n d j  such that  fvj(p',p)d#j x~tj < 5. 
By assumption ]PJ, QJ] < 5. Let w E PJ have the property that  f vj(w,p)d#j < 
5. Set 

PC = {p �9 Pr <_ e/32}. 

#jT' j  > 1 - ( / 3 2 .  Since IPJ,QJl < 5, there is a m a p  lr : PJ --+ QJ, 1-1 and 

measure preserving, and a set D such that  if p �9 D then p and ~rp have the same 

Gj name, and #jD > 1 - 5. Now 

(1) / v j (w,q)d~j  = frDVj(w,q)d~'j+ ~Dcvj(w,q)dvj 

(2) ~ ./ ,  vj(w,q)d#j +5 

(3) < 25. 

Let Qj = {q �9 QJlvj(w,q) < e/16}, uQj > 1 -  c/16. I f p  E T'j and q �9 Qj then 

vj (p, q) < e/8. Call a word in P "  g o o d  if the fraction of Gj coset names in that  

word that  fall in "Pj is greater than 1 - e/16, and likewise for Q'~. Define 

B~ = {p e P"]p is good} 

and 

B~ = {q �9 Qn]q is good}. 

Notice both these sets are G,~ invariant. By the ergodic theorem, pick N such 

that  for all n > N,  # B  P > 1 - e/16, and uB Q > 1 - e/16. Fix any n _> N and 
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build a tower in P~ over a base F1 of height q~ and likewise in Q~ with base F2. 

Let F = F1 x F2. For each pair of names, PF = P I'1 F1 and qF = q M F2, with 

p E P'~, q E Qn, there is a q~ = gqF for some g E G~ such that  some a that  attains 

the minimum in vn(pF, ql) fixes the identity. For any qF E F2, choose such an a 

and q~. The measure will be supported on points (/3, q, a) (and translates of these 

points), where/3 = PF and ~ = aq'. Let 

(t,pF)O'q ) 
ft(/3,(l,a) - qn(# x v )F  - ft(g(/3'O'a))" 

Notice that  ftX = 1 and ft is G,~ invariant. Furthermore, ft projects correctly. It 

suffices to check this for the q~ specified beforehand: 

(4) [~{(/3,gt, a)iagt=q' } = ~_, fL{(~,gl, a) laO=q' ,~r l /3=pF } 
pFEF1 

(5) _ uqF _ uq'. 
q~uF2 

Let 2: = (/3, q, a), and E = B P xBQNF1 xF2. Notice that  # x u E  >_ ( l - e / 8 ) ~ x  uF  

and, if (p, q) E E, then vn(p, q) <_ el4. It follows that 

(6) Or (#n, un) 

(7) 

(8) 

(9) 

f 
_< D(D(o) r 0(o)} +/mn(a)dD 

= S v n ( p , q ) d f t  

-- (p x l , ) F  iF vn(p, q)d# x u 

( ,  x u)F 1 s e (10) <_ vn(p,q)d~ x u + -g < e. 

This finishes a ~ 4. 

Remark  3.1: Given any restricted orbit equivalence with size m, Kammeyer and 

Rudolph define a canonical notion of m finitely determined [8]. Since r equiv- 

alence is a restricted orbit equivalence with corresponding size mr [7], there is 

a corresponding notion of mr finitely determined. This definition coincides with 

the definition' of r finitely determined. 

For 4 ~ 1, apply the equivalence theorem proved in [8], which states that  any 

two rnr finitely determined actions of equal r entropy are mr equivalent. This 

translates as follows: Any two r finitely determined actions of zero r entropy are 
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r equivalent. Since the translation action is r finitely determined with zero r 

entropy, if T is r finitely determined with zero r entropy, then T is standard. 

4. B e r n o u l l i s  a r e  s t a n d a r d  

Let G ~ r . i = ~ n = l  Z /rnZ ,  = (rl , r2,  ..), Gi = ~-~-n=l Z/rnZ,  and qi = ~Gi.  Let 

X -- ( {0 , . . . ,  l - 1} a,  9 ~, #, a) where # is iid measure ( l / l , . . . ,  l / l ) .  Let P be the 

parti t ion at the identity into l sets, and pi  = ~/g~G~ agP. Let ri+l = /a~+lq~. 

The goal of this section is to prove the following. 

THEOREM 4.1: I f  ~ ak = oc then X is standard. 

The main tool used in this proof is the standardness criterion developed in the 

previous section, i.e. given e > 0 there exists j such that  

• < 

The idea for the proof is as follows. Given any two Gj words, apply an inductive 

algorithm to match the words in the vj metric. Step 1 switches Gj-1  cosets 

around in the Gj word so that  most of the Gj-1 coset pairs have the same name 

on the first 5jqj-1 coordinates. In each of these steps, 5k is less than half of ak, 

and will be specified later. Now the first 5jqj-1 coordinates of every Gj -1  coset 

pair (even the unmatched ones) will never be tampered with again. At step 2, 

switch around the remaining Gj-2 cosets inside every Gj-1 word so that  the name 

of the first 5 j - lq j -2  coordinates in most of the Gj-2 coset pairs agree. Repeat  

this process until the (j - i) th stage. The inside of each Gi coset pair remains 

the same, so that  if i is chosen large enough, the size of the automorphism that  

was used is small. Choose j large enough so that  after the algorithm is applied 

j - i times, most pairs of words will agree most of the time. 

The following series of remarks ensures that  it is possible to pick 5k+1 so that  

ak+lrk C N and ~ 5k = co. In particular this will imply that  the number of 

coordinates reserved at each stage, namely ak+lqk, is a whole number of Gk-1 

cosets. 

Set B = {k : ak ~_ 1/k2}. Then )-~Bc ak = co, since )-~B ak <: co. WLOG 

assume tha t  ak > 1/k 2 for every k, since skipping steps in the matching algorithm 

gives no change in the estimates. With this reduction, ~ 1/rk < oo since 

1 1 1 

which is summable.  Now 

E[l~ 1 [  qk J ~k ~ - -  ~ \(1Og---rk+lqk "~kl) 
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Set  k l=min{II~ 11 } 
L qk ] 2rk' 

From the previous remarks, it follows that ~ 5k = c~. 

The following lemma gives an estimate on the amount of matching gained in 

one step of the algorithm. Let dk be the probability that a pair of Gk words 

agree on the first gtk+lq k coordinates. Since the coordinates are independent and 

each symbol has equal weight, 

dk = 1 -a~+lq~. 

A Gk+l pair of words is g o o d  if the last (1 - 5k+2)rk+l Gk cosets can be 

rearranged so that  1 - e/8 of those Gk coset pairs agree on the first ak§ 

coordinates. Let Bk be the set of all good Gk pairs and wk = # x i tBk.  We want 

to estimate wk+l. For a pair of Gk+l words (p,q), look at the first Gk coset of 

p. The probability of finding a Gk coset of q to match it is 

dk + dk(1 - dk) + ' . -  + dk(1 - dk) rk+l(1-ak+2)-I = (1 - (1 - dk)r~+l(1-ak+2)-l). 

Likewise, the probability of matching the nth Gk coset is 

( 1  - (1 - dk)r~+'0-ak+2)-n). 

So the probability of matching Nk = [(1 - e/S)(1 - 5k+2)rk+l] + 1 of the cosets 

can be estimated by 

Nk 

/ n k +  1 ~_ H ( 1  - (1 - dk))~+l(1-ak+2)-n). 
n = l  

The following lemma, which demonstrates that  mk+l  is close to 1, is true because 

at each stage dk is not too small in comparison with rk+l. In particular, dkrk+l > 

r q ~ ,  which will be the dominant term in the estimate on rnk+l. Thus by only 

demanding that  the matching occur on a small percentage of coordinates at each 

stage, the probability that  this match occurs is large. 

LEMMA 4.1: Given e > O, 3 i such that Vk >__ i, mk+l  > 1 - e/8. 

Proof'. Pick i such that  

1. rk >__ ri >_ i, Vk > i, 
~2 

2. igri+l  > 1, 
3. e - (  ~'/er;-r)~2/16 < �89 and 

10 { 2(1-~) 4. x / ~ - l n i  > ~ l n  - -  ~ - - l n ( 1 - - ~ )  ] " 
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Notice that  for 0 < x < �89 e -2z <_ 

(1 - e/8)(1 - 5k+2)rk+l + 1, it follows that  

(11) (1 - ak+2)rk+l - Nk _> 

(12) > 

(13) _> 

From these observations we have 

(14) mk+: > 

(15) _> 

(16) > 

1 - x  _< e -x. Also, 

s 

( ~  --  8 ( 1  --  ~:))rk+ 1 - -  1 

E 2 
~ - r k + l  - 1 

s 

"i-~ r k +  1 �9 

(I - (I - dk)~'~+') (1-~)''+, 

(I - e- rv/~-+~ll~ ) (1- l-~Irk+, 

since Nk <_ 

To show that  mk+l >_ 1 - e/8 Vk > i it suffices to choose i so that  the following 

equation holds: 

- l n r i + l > ~ l n  - - ~ n ~ - ~ - )  ' 

But the function v ~ -  In x tends to infinity monotonically, so by condition 4 and 

the fact that  ri >_ i we obtain this inequality. 

The next lemma is needed to show that  if ~ &k = 0% the total fraction of 

coordinates reserved from all the steps of the induction tends to 1. For a sequence 

{bk} set fk(X) = x + bk(1 -- x) and fk(O) = f l  o . . .  o fk(O). 

L E M M A  4.2: ]k(O) = 1 - 1- I ik_l (1  - be). 

Proo~ The proof is by induction and is left to the reader. 

Remark  4.1: If }-'~ bk = co and 0 < bk < b < 1 then ]k(0) ~ 1. 

Proof  of  Theorem: Fix e > 0. Pick i such that  2 - i  < e/16, and such that  

the conclusion of the first lemma holds. Pick j such that, if bk = 53-k, then 

]j (0) > 1 - e/8. Let Wk be the total number of coordinates matched at the kth 

stage. In the first step of the algorithm, we reserve 5jqj-1 coordinates of every 

Gj -1  coset in every pair, and try to make these coordinates agree by rearranging 

Gj-1  cosets around in the Gj word. After this step is done, we never move the 

reserved places again. Let xk be the fraction of each Gj word that  is reserved up 

through the kth step. xl = 5j. There are 12q, pairs, and (1 - e/8) of them fall in 

Bj (the set defined in the first lemma). At this point, nothing is reserved from 
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the previous step, so 

C s ~ 
Wl>_12q~(1-~)rj(1-~)ajqj-1.  

In the kth step of the algorithm, there are l 2qj rj-k+2 ...rjxk-2 pairs of Gj -k+l  

cosets that  have been reserved from steps 1 through k - 2, and 5j-k+2 part  of 

each Gj-k+l coset pair reserved from the previous step. Since X is iid, the 

occurrence of pairs from Bj-k+l as the name of an Gj-k+l  coset will be at least 

(1 - e / 8 ) ( 1 2 q j ) r j - k + 2  " . .  rj(1 - Xk_2) out of the total number of Gj -k+l  coset 

pairs. If (p, q) C Bj-k+l then the number of coordinates matched is greater than 

(1 -- 5 j -k+2)aj-k+l  (1 -- e/8)rj-k+lqj_k. 

Notice (1 - ~j-k+2)(1 - xk-2) = (1 - xk-1), since xk-1 ---- fj-k+2(Xk-2). Hence 

Wk >_ (1 -- e/8)2(I 2qj)qj (1 -- Xk-1)aj-k+l.  

But 
j - - i  

w k  > (1 - 

k = l  

which gives a lower bound on the total number of coordinates that  can be 

matched. Now 

vP(x ,y )d#x#< - ( 1 -  + e / 8 < e .  E / S )  3 1 

Note: There are two places where the estimates are affected if it is necessary to 

skip steps in the matching algorithm. First, in the technical lemma, if &k+l _< 

1/k 2, we would calculate the probability of matching [(1 - e)rk+l] + 1 of the Gk 

cosets instead of [(1 - e)(1 - ak+2)rk+l] + 1 of them, which can be done with 

only minor modifications in the argument. The other place that  the argument is 

affected is when we count the number of coordinates matched. Suppose hi-k+1 

is not large enough. This time, in the kth step of the algorithm, we reserve 

12q~ ? ~ j - k  + l " �9 �9 r j X k - 1  

pairs of Gj -k  cosets from steps 1 through k - 1, since Xk_ 1 - ~ -  Xk_ 2. Notice 

that  all of the coordinates reserved from the previous stages are whole Gj-k 
cosets. However, this gives the same final estimate on the number of coordinates 

matched. 
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COROLLARY 4.1 ([3]): I f  r is entropy free, every r equivalence class contains a 

positive entropy action. 

Proof." Fix r entropy free. Given a G action To, there is a G action T, which 

is equivalent to To, and which has an r finitely determined action as a factor [8]. 
1 1 Let $1 be the lid G action with measure (5, 5)" From the previous theorem, S is 

equivalent to S1. Now construct a lift T1 of $1 that is equivalent to T. In other 

words, a lift that completes the following diagram: 

(17) 

To ~ ,  T ~ ,  T1 

S ~ . $1 

Since S1 is a factor of T1, T1 must have positive entropy, and T1 is equivalent to 

To. 

COROLLARY 4.2: Any  finite entropy Bernoulli process is standard when r is 

entropy free. 

Proof." Use the fact that for any iid process with equal weights on the symbols 

this is true, and the fact that factors of r finitely determined processes are r 

finitely determined [8]. 

Remark 4.2: It follows from this result and the fact that r equivalence is a 
restricted orbit equivalence that hr(T) -- 0 VT when 

Z l o g _  c~. r k +____~l 

qk 
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